Verifica sui sistemi lineari: metodo del confronto e metodo di Cramer

  • 1/9

    Il metodo del confronto è un particolare uso del metodo di sostituzione.

  • 2/9

    Si consideri il seguente sistema di equazioni:{x2(y(x+1))=123yx2=(3+x)2 \begin{cases} x - 2(y-(x+1)) = 12 \\3y -x^2 = (3+x)^2\end{cases}A quale equazione risolvente si giunge confrontando le diverse espressioni di xx derivanti dalle due equazioni?

  • 3/9

    Si considerino i seguenti sistemi di equazioni:A) {x+y=1xy=5B) {3x=9y43x=4x+2C) {2x4y=7y=3x1 A) \ \begin{cases} x + y = 1 \\x - y = 5\end{cases} \quad B) \ \begin{cases} 3x = 9 y - 4\\3x = 4 x + 2 \end{cases} \quad C) \ \begin{cases} 2x - 4y = 7\\ y = 3x -1\end{cases}A ciascuno di questi può essere applicato, senza altri passaggi algebrici, un metodo di risoluzione: collegare a ciascun metodo il sistema per il quale lo si ritiene il più appropriato.

    Sostituzione
    Riduzione
    Confronto
  • 4/9

    Sia dato il seguente sistema di due equazioni a due incognite:{(x3(y1))+2x=32(3xy)+3(1x)=12 \begin{cases} -\left( x - 3 (y -1)\right) + 2x = 3 \\2( 3x - y) + 3(1 -x) = -12\end{cases} Indicarne la soluzione. Se la soluzione è costituita da una coppia di numeri reali (x;y)(x; y), scrivere tale coppia (ad esempio, “(3; 4)”, e non “(3,4)” o “(3;4)”); se il sistema è indeterminato, scrivere “indeterminato”; se il sistema non ammette soluzione, scrivere “impossibile”.

  • 5/9

    Sia dato il sistema di due equazioni in due incognite{2x3y=4x+2y=2 \begin{cases} \sqrt{2} x - 3 y = 4 \\x + \sqrt{2} y = 2\end{cases} Associare al ciascuno dei seguenti valori il determinante relativo al sistema precedente che assume tale valore.

    55
    642-6 - 4\sqrt{2}
    4+22-4 + 2\sqrt{2}
  • 6/9

    Il sistema {a1x+b1y=c1a2x+b2y=c2\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \end{cases} è indeterminato se e solo se il sue determinante DD, a1b2a2b1a_1b_2 - a_2b_1, è uguale a 00.

  • 7/9

    Consideriamo il seguente sistema di equazioni:{5x+3y=23x5y=2 \begin{cases} \sqrt{5} x + \sqrt{3} y = 2 \\ \sqrt{3} x - \sqrt{5} y = 2\end{cases} Usando il metodo di Cramer, indicare quale tra le seguenti è la soluzione di tale sistema.

  • 8/9

    Si consideri il sistema lineare di tre equazioni in tre incognite{x+2y+z=32x+y2z=1y+z=4 \begin{cases} x + 2y + z = 3 \\ -2x + y -2z = -1 \\ y + z = 4\end{cases}Se ne indichi la soluzione. Se la soluzione è costituita da una terna di numeri reali (x;y;z)(x; y; z), scrivere tale terna (ad esempio, “(3; 4; 5)”, e non “(3,4,5)” o “(3;4;5)”); se il sistema è indeterminato, scrivere “indeterminato”; se il sistema non ammette soluzione, scrivere “impossibile”.

  • 9/9

    Usando il metodo di risoluzione che si ritiene più appropriato, indicare quale delle seguenti coppie di numeri reali è soluzione del sistema{(x+2)(y1)=(x1)(y+2)6(x13(y+2))=11(2(x1)+y+2) \begin{cases} \displaystyle{(x+2)(y-1) = (x-1) (y+2)} \\ \displaystyle{6\left( x-1 -3(y+2) \right) = -11\left( 2(x-1) + y+2 \right)} \end{cases}