6'

Angoli notevoli: tabella delle funzioni goniometriche per angoli noti

Le funzioni trigonometriche seno, coseno, tangente e cotangente possono valere quantità differenti a seconda dell’angolo in cui vengono calcolate; in generale non esiste un modo per scrivere queste quantità, se non come numeri con la virgola (e parte decimale potenzialmente infinita non periodica). Questo è in effetti il risultato che si ottiene se si svolgono conti di questo tipo con una calcolatrice scientifica.

Per alcuni speciali valori di $\alpha$, tuttavia, i valori di $\sin(\alpha), \cos(\alpha), \tan(\alpha), \cot(\alpha)$ possono essere scritti con un’espressione più stringata e soprattutto più precisa, che a volte può essere molto più utile del valore fornito dalla calcolatrice. Riportiamo qua sotto una tabella con l’elenco di questi valori notevoli. Dato che le funzioni seno e coseno sono periodiche di periodo $2\pi$ radianti, possiamo limitarci a elencare questi valori per angoli di ampiezza compresa tra $0$ e $2\pi$ radianti, cioè tra $0$ e $360^\circ$.

$$\color{red}{ \large \alpha}$$ $$\color{red}{ \large \sin(\alpha)}$$ $$\color{red}{ \large \cos(\alpha)}$$ $$\color{red}{ \large \tan(\alpha)}$$ $$\color{red}{ \large \cot(\alpha)}$$
$$ \color{blue}{ \large 0 \text{ rad}; \ 0^\circ}$$ $ \color{blue}{ \large 0}$ $ \color{blue}{ \large 1}$ $ \color{blue}{ \large 0}$ $\color{blue}{ \large \text{non definito}}$
$$\frac{\pi}{12} \text{ rad}; \ 15^\circ$$ $\frac{\sqrt{6} - \sqrt{2}}{4}$ $\frac{\sqrt{6} + \sqrt{2}}{4}$ $2 - \sqrt{3}$ $2 + \sqrt{3}$
$$\frac{\pi}{10} \text{ rad}; \ 18^\circ$$ $\frac{\sqrt{5} - 1}{4}$ $\sqrt{\frac{5}{8} +\frac{\sqrt{5}}{8}}$ $\sqrt{1 - \frac{2\sqrt{5}}{5}}$ $\sqrt{5 +2\sqrt{5}}$
$$\frac{\pi}{8} \text{ rad}; \ 22^\circ 30’$$ $\frac{\sqrt{2 -\sqrt{2}}}{2}$ $\frac{\sqrt{2 +\sqrt{2}}}{2}$ $\sqrt{2} - 1$ $\sqrt{2} + 1$
$$\frac{\pi}{6} \text{ rad}; \ 30^\circ$$ $\frac{1}{2}$ $\frac{\sqrt{3}}{2}$  $\frac{\sqrt{3}}{3}$ $\sqrt{3}$ 
$$\frac{\pi}{5} \text{ rad}; \ 36^\circ$$ $\frac{\sqrt{10-2 \sqrt{5}}}{4}$ $\frac{\sqrt{5}+1}{4}$ $\sqrt{5-2\sqrt{5}}$ $\frac{\sqrt{25+10\sqrt{5}}}{5}$
$$\frac{\pi}{4} \text{ rad}; \ 45^\circ$$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $1$ $1$
$$\frac{3\pi}{10} \text{ rad}; \ 54^\circ$$  $\frac{\sqrt{5}+1}{4}$ $\frac{\sqrt{10-2 \sqrt{5}}}{4}$ $\frac{\sqrt{25+10\sqrt{5}}}{5}$ $\sqrt{5-2\sqrt{5}}$
$$\frac{\pi}{3} \text{ rad}; \ 60^\circ$$ $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $\sqrt{3}$ $\frac{\sqrt{3}}{3}$
$$\frac{3\pi}{8} \text{ rad}; \ 67^\circ 30'$$ $\frac{\sqrt{2+\sqrt{2}}}{2}$ $\frac{\sqrt{2-\sqrt{2}}}{2}$ $\sqrt{2}+1$ $\sqrt{2}-1$
$$\frac{2\pi}{5} \text{ rad}; \ 72^\circ$$ $\frac{\sqrt{10+2 \sqrt{5}}}{4}$ $\frac{\sqrt{5}-1}{4}$ $\sqrt{5+2\sqrt{5}}$ $\frac{\sqrt{25-10\sqrt{5}}}{5}$
$$\frac{5\pi}{12} \text{ rad}; \ 75^\circ$$ $\frac{\sqrt{6} + \sqrt{2}}{4}$ $\frac{\sqrt{6} - \sqrt{2}}{4}$ $2 + \sqrt{3}$ $2 - \sqrt{3}$
$$ \color{blue}{ \large \frac{\pi}{2} \text{ rad}; \ 90^\circ}$$ $ \color{blue}{ \large 1}$ $ \color{blue}{ \large 0}$ $ \color{blue}{ \large\text{non definito}}$ $ \color{blue}{ \large 0}$
$$\frac{7\pi}{12} \text{ rad}; \ 105^\circ$$ $\frac{\sqrt{6} + \sqrt{2}}{4}$ $\frac{\sqrt{2} - \sqrt{6}}{4}$ $-2 - \sqrt{3}$ $\sqrt{3}-2$
$$\frac{3\pi}{5} \text{ rad}; \ 108^\circ$$ $\frac{\sqrt{10+2 \sqrt{5}}}{4}$ $\frac{1-\sqrt{5}}{4}$ $-\sqrt{5+2\sqrt{5}}$ $-\frac{\sqrt{25-10\sqrt{5}}}{5}$
$$\frac{5\pi}{8} \text{ rad}; \ 112^\circ 30'$$ $\frac{\sqrt{2+\sqrt{2}}}{2}$ $-\frac{\sqrt{2-\sqrt{2}}}{2}$ $-\sqrt{2}-1$  $1-\sqrt{2}$
$$\frac{2\pi}{3} \text{ rad}; \ 120^\circ$$ $\frac{\sqrt{3}}{2}$ $-\frac{1}{2}$ $-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$
$$\frac{7\pi}{10} \text{ rad}; \ 126^\circ$$ $\frac{\sqrt{5}+1}{4}$ $-\frac{\sqrt{10-2 \sqrt{5}}}{4}$ $-\frac{\sqrt{25+10\sqrt{5}}}{5}$ $-\sqrt{5-2\sqrt{5}}$
$$\frac{3\pi}{4} \text{ rad}; \ 135^\circ$$ $\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{2}}{2}$ $-1$ $-1$
$$\frac{4\pi}{5} \text{ rad}; \ 144^\circ$$ $\frac{\sqrt{10-2 \sqrt{5}}}{4}$ $-\frac{\sqrt{5}+1}{4}$ $-\sqrt{5-2\sqrt{5}}$ $-\frac{\sqrt{25+10\sqrt{5}}}{5}$
$$\frac{5\pi}{6} \text{ rad}; \ 150^\circ$$ $\frac{1}{2}$ $-\frac{\sqrt{3}}{2}$  $-\frac{\sqrt{3}}{3}$ $-\sqrt{3}$
$$\frac{7\pi}{8} \text{ rad}; \ 157^\circ 30'$$ $\frac{\sqrt{2 -\sqrt{2}}}{2}$ $-\frac{\sqrt{2 +\sqrt{2}}}{2}$ $1-\sqrt{2}$ $-\sqrt{2} - 1$
$$\frac{9\pi}{10} \text{ rad}; \ 162^\circ$$ $\frac{\sqrt{5} - 1}{4}$ $-\sqrt{\frac{5}{8} +\frac{\sqrt{5}}{8}}$ $-\sqrt{1 - \frac{2\sqrt{5}}{5}}$ $-\sqrt{5 +2\sqrt{5}}$
$$\frac{11\pi}{12} \text{ rad}; \ 165^\circ$$ $\frac{\sqrt{6} - \sqrt{2}}{4}$ $-\frac{\sqrt{6} + \sqrt{2}}{4}$ $\sqrt{3}-2$ $-2 - \sqrt{3}$
$$ \color{blue}{ \large \pi \text{ rad}; \ 180^\circ}$$ $ \color{blue}{\large 0}$ $ \color{blue}{ \large -1}$ $\color{blue}{\large 0}$ $\color{blue}{\large \text{non definito}}$
$$\frac{13\pi}{12} \text{ rad}; \ 195^\circ$$ $\frac{\sqrt{2} - \sqrt{6}}{4}$ $-\frac{\sqrt{6} + \sqrt{2}}{4}$ $2 - \sqrt{3}$ $2 + \sqrt{3}$
$$\frac{11\pi}{10} \text{ rad}; \ 198^\circ$$ $\frac{1-\sqrt{5}}{4}$ $-\sqrt{\frac{5}{8} +\frac{\sqrt{5}}{8}}$ $\sqrt{1 - \frac{2\sqrt{5}}{5}}$ $\sqrt{5 +2\sqrt{5}}$
$$\frac{9\pi}{8} \text{ rad}; \ 202^\circ 30'$$ $-\frac{\sqrt{2-\sqrt{2}}}{2}$ $-\frac{\sqrt{2 +\sqrt{2}}}{2}$ $\sqrt{2} - 1$ $\sqrt{2} + 1$
$$\frac{7\pi}{6} \text{ rad}; \ 210^\circ$$ $-\frac{1}{2}$ $-\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{3}$ $\sqrt{3}$
$$\frac{6\pi}{5} \text{ rad}; \ 216^\circ$$ $-\frac{\sqrt{10-2 \sqrt{5}}}{4}$ $-\frac{\sqrt{5}+1}{4}$ $\sqrt{5-2\sqrt{5}}$ $\frac{\sqrt{25+10\sqrt{5}}}{5}$
$$\frac{5\pi}{4} \text{ rad}; \ 225^\circ$$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{2}}{2}$ $1$ $1$
$$\frac{13\pi}{10} \text{ rad}; \ 234^\circ$$ $-\frac{\sqrt{5}+1}{4}$ $-\frac{\sqrt{10-2 \sqrt{5}}}{4}$ $\frac{\sqrt{25+10\sqrt{5}}}{5}$ $\sqrt{5-2\sqrt{5}}$
$$\frac{4\pi}{3} \text{ rad}; \ 240^\circ$$ $-\frac{\sqrt{3}}{2}$ $-\frac{1}{2}$ $\sqrt{3}$ $\frac{\sqrt{3}}{3}$
$$\frac{11\pi}{8} \text{ rad}; \ 247^\circ 30'$$ $-\frac{\sqrt{2 +\sqrt{2}}}{2}$ $-\frac{\sqrt{2-\sqrt{2}}}{2}$ $\sqrt{2}+1$ $\sqrt{2}-1$
$$\frac{7\pi}{5} \text{ rad}; \ 252^\circ$$ $-\sqrt{\frac{5}{8} +\frac{\sqrt{5}}{8}}$ $\frac{1-\sqrt{5}}{4}$ $\sqrt{5+2\sqrt{5}}$ $\frac{\sqrt{25-10\sqrt{5}}}{5}$
$$\frac{17\pi}{12} \text{ rad}; \ 255^\circ$$ $-\frac{\sqrt{6} + \sqrt{2}}{4}$ $\frac{\sqrt{2} - \sqrt{6}}{4}$ $2 + \sqrt{3}$ $2 - \sqrt{3}$
$$ \color{blue}{ \large \frac{3\pi}{2} \text{ rad}; \ 270^\circ}$$ $ \color{blue}{ \large -1}$ $ \color{blue}{ \large 0}$ $\color{blue}{ \large \text{non definito}}$ $ \color{blue}{ \large 0}$
$$\frac{19\pi}{12} \text{ rad}; \ 285^\circ$$ $-\frac{\sqrt{6} + \sqrt{2}}{4}$ $\frac{\sqrt{6} - \sqrt{2}}{4}$ $-2 - \sqrt{3}$ $\sqrt{3}-2$
$$\frac{8\pi}{5} \text{ rad}; \ 288^\circ$$ $-\sqrt{\frac{5}{8} +\frac{\sqrt{5}}{8}}$ $\frac{\sqrt{5}-1}{4}$ $-\sqrt{5+2\sqrt{5}}$ $-\frac{\sqrt{25-10\sqrt{5}}}{5}$
$$\frac{13\pi}{8} \text{ rad}; \ 292^\circ 30'$$ $-\frac{\sqrt{2 +\sqrt{2}}}{2}$ $\frac{\sqrt{2-\sqrt{2}}}{2}$ $-\sqrt{2}-1$ $1-\sqrt{2}$
$$\frac{5\pi}{3} \text{ rad}; \ 300^\circ$$ $-\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$
$$\frac{17\pi}{10} \text{ rad}; \ 306^\circ$$ $-\frac{\sqrt{5}+1}{4}$ $\frac{\sqrt{10-2 \sqrt{5}}}{4}$ $-\frac{\sqrt{25+10\sqrt{5}}}{5}$ $-\sqrt{5-2\sqrt{5}}$
$$\frac{7\pi}{4} \text{ rad}; \ 315^\circ$$ $-\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $-1$ $-1$
$$\frac{9\pi}{5} \text{ rad}; \ 324^\circ$$ $-\frac{\sqrt{10-2 \sqrt{5}}}{4}$ $\frac{\sqrt{5}+1}{4}$ $-\sqrt{5-2\sqrt{5}}$ $-\frac{\sqrt{25+10\sqrt{5}}}{5}$
$$\frac{11\pi}{6} \text{ rad}; \ 330^\circ$$ $-\frac{1}{2}$ $\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{3}}{3}$ $-\sqrt{3}$
$$\frac{15\pi}{8} \text{ rad}; \ 337^\circ 30'$$ $-\frac{\sqrt{2-\sqrt{2}}}{2}$ $\frac{\sqrt{2 +\sqrt{2}}}{2}$ $1-\sqrt{2}$ $-\sqrt{2} - 1$
$$\frac{19\pi}{10} \text{ rad}; \ 342^\circ$$ $\frac{1-\sqrt{5}}{4}$ $\sqrt{\frac{5}{8} +\frac{\sqrt{5}}{8}}$ $-\sqrt{1 - \frac{2\sqrt{5}}{5}}$ $-\sqrt{5 +2\sqrt{5}}$
$$\frac{23\pi}{12} \text{ rad}; \ 345^\circ$$ $\frac{\sqrt{2} - \sqrt{6}}{4}$ $\frac{\sqrt{6} + \sqrt{2}}{4}$ $\sqrt{3}-2$ $-2 - \sqrt{3}$
$$ \color{blue}{ \large 2 \pi \text{ rad}; \ 360^\circ}$$ $ \color{blue}{ \large 0}$ $ \color{blue}{ \large 1}$ $ \color{blue}{ \large 0}$ $ \color{blue}{ \large \text{non definito}}$