7'

Lo sconto commerciale e lo sconto mercantile

In ambito commerciale esistono due tipi di sconto:

  • Lo sconto mercantile
  • Lo sconto commerciale

 

LO SCONTO MERCANTILE

Lo sconto mercantile è una riduzione di prezzo che il venditore applica al compratore.
Sono esempi di sconti mercantili gli sconti applicati in fattura sull’importo delle merci.
La relazione fondamentale per risolvere i problemi con lo sconto mercantile è:Prezzo listino  Sconto mercantile = Prezzo pagato \text{Prezzo listino } - \text{ Sconto mercantile } = \text{ Prezzo pagato}In questa formula:

  • il Prezzo di listino è il prezzo dichiarato dal venditore prima di applicare lo sconto
  • lo Sconto mercantile è lo sconto calcolato dal venditore sul prezzo di listino
  • il Prezzo pagato è il prezzo effettivamente pagato dal compratore

La proporzione per calcolare lo sconto mercantile è:100:r= Prezzo di listino:Sconto mercantile 100 : r = \text{ Prezzo di listino} : \text{Sconto mercantile}Dove rr è il tasso di sconto mercantile; come si vede, il tasso è espresso in percentuale.

 

PROBLEMA DIRETTO: CALCOLO DELLO SCONTO MERCANTILE E DEL PREZZO PAGATO

Un tablet è esposto in un negozio con un prezzo di listino di 400 €. Sapendo che il negozio applica uno sconto del 5%, calcolare il prezzo pagato dai clienti per l’acquisto del tablet.

Dati

Prezzo di listino = 400 €
r = 5%
Prezzo pagato = ?

Si calcola lo sconto impostando la proporzione: 100:5=400:X  X=4005100=20 100 : 5 = 400 : X \ \Rightarrow \ X = \frac{400 \cdot 5} {100} = 20

Da qui ricaviamo che Prezzo pagato = Prezzo di listino  Sconto mercantile =40020=380\text{Prezzo pagato } = \text{ Prezzo di listino } - \text{ Sconto mercantile } = 400 - 20 = 380 .

Il prezzo pagato dai clienti per l’acquisto di un tablet è quindi di 380380

Per calcolare direttamente il prezzo pagato o per risolvere problemi inversi è necessario fare ricorso alla seguente proporzione:100:(100r)= Prezzo di listino : Prezzo pagato  100 : (100 - r) = \text{ Prezzo di listino } : \text{ Prezzo pagato }oppure, usando le proprietà delle proporzioni, la proporzione equivalente(100r):100= Prezzo pagato : Prezzo di listino  (100 - r) :100 = \text{ Prezzo pagato } : \text{ Prezzo di listino }

 

PROBLEMA DIRETTO: CALCOLO DEL PREZZO PAGATO

Risolvere il problema precedente in un unico passaggio.

 

Applichiamo la proporzione 100:(100r)= Prezzo di listino : Prezzo pagato 100 : (100 - r) = \text{ Prezzo di listino } : \text{ Prezzo pagato } al problema precedente: 100:95=400:X100 : 95 = 400 : X, da cui arriviamo a X=40095100=380 X = \frac{400 \cdot 95 }{ 100 } = 380 . Il prezzo pagato dai clienti per l’acquisto di un tablet è 380 €


PROBLEMA INVERSO: CALCOLO DEL PREZZO DI LISTINO

Una famiglia ha pagato una vacanza al mare 2.250 €. Sapendo che ha ottenuto uno sconto del 10%, calcola il prezzo di listino.

Dati

Prezzo pagato = 2.250 €
r = 10%
Prezzo di listino = ?

 

Per risolvere questo problema, applichiamo la seguente proporzione: 100:(100r)= Prezzo di listino : Prezzo pagato100 : (100 - r) = \text{ Prezzo di listino } : \text{ Prezzo pagato}. Sostituendo i dati in nostro possesso, otteniamo100:(10010)=X:2250  X=225010090 100 : (100 - 10) = X : 2250 \ \Rightarrow \ X = \frac{2250 \cdot 100}{90}Il prezzo di listino del viaggio è 2.500 €

 

PROBLEMA INVERSO: CALCOLO DELLO SCONTO MERCANTILE

Una squadra di calcio ha acquistato un set di magliette da allenamento pagando complessivamente 900 €. Sapendo che è stato applicato uno sconto del 10%, calcolare l’importo dello sconto ottenuto.

Dati

Prezzo pagato = 900 €
r = 10%
Sconto mercantile = ?


Ancora una volta, applichiamo una proporzione. Questa volta però, siccome dobbiamo calcolare l’importo dello sconto, è necessario usare la seguente:(100r):r= Prezzo pagato : Sconto mercantile  (100 - r) : r = \text{ Prezzo pagato } : \text{ Sconto mercantile }Sostituendo i dati in nostro possesso, abbiamo la seguente formula:90:10=900:X  X=9001090=100 90 : 10 = 900 : X \ \Rightarrow \ X = \frac{900 \cdot 10 }{ 90 } = 100 Lo sconto ottenuto è di 100 €

 

LO SCONTO COMMERCIALE

Lo sconto commerciale è il compenso che spetta a chi paga un debito prima della scadenza. La differenza fondamentale fra sconto mercantile e sconto commerciale è che quest’ultimo dipende dal tempo.

 

La formula per calcolare l’importo dello sconto commerciale dipende pertanto da come si calcola il tempo. Abbiamo quindi quattro formule:

  • Sc=Crt100 Sc = \displaystyle{\frac{ C \cdot r \cdot t }{ 100 }} se il tempo è espresso in anni
  • Sc=Crt1200 Sc = \displaystyle{\frac{ C \cdot r \cdot t }{ 1200 }} se il tempo è espresso in mesi
  • Sc=Crt36500 Sc = \displaystyle{\frac{ C \cdot r \cdot t }{ 36500 }} se il tempo è espresso in giorni calcolati secondo il calendario dell’anno civile
  • Sc=Crt36000 Sc = \displaystyle{\frac{ C \cdot r \cdot t }{ 36000 }} se il tempo è espresso in giorni calcolati secondo il calendario dell’anno commerciale (considerando tutti i mesi di 30 giorni)

In queste formule:

  • ScSc è l’ammontare dello sconto commerciale
  • CC è il valore nominale del debito, cioè l’importo intero che il debitore avrebbe dovuto pagare a scadenza
  • rr è il tasso di sconto commerciale
  • tt è il tempo di anticipo con cui si paga il debito

 

La somma pagata effettivamente dal debitore al creditore è detta Valore Attuale (che nelle formule indicheremo con VAVA); essa si calcola in questo modo:VA=CSc VA = C - Sc Sostituendo a ScSc la formula dello sconto commerciale si ha: VA=CCrt100VA = C – \displaystyle{\frac{ C \cdot r \cdot t }{ 100 }}. Raccogliendo a fattor comune la CC: VA=C(1rt100)VA = C \cdot \displaystyle{\left( 1 - \frac{ r \cdot t }{ 100 }\right)}. Calcolando il minimo comune denominatore dentro parentesi:VA=C(100rt100) VA = C \cdot \left( \frac{100 - r \cdot t}{100} \right)Da notare che nella formula precedente abbiamo sottointeso che il tempo tt venisse calcolato in anni: se dovesse essere espresso in altre forme, come in mesi o giorni, al posto di 100100 bisognerà indicare il denominatore corretto, come illustrato in precedenza.


Possiamo anche rappresentare uno sconto commerciale graficamente. Avremo un diagramma di questo tipo:

 

PROBLEMA DIRETTO: CALCOLO DEL VALORE ATTUALE

Il 12 gennaio Tizio salda anticipatamente un proprio debito di 20.000 € scadente il 30 ottobre dello stesso anno. Sapendo che ha ottenuto uno sconto del 10%, calcolare la somma effettivamente pagata.


Impostiamo il grafico:

Si può risolvere il problema in due modi.

 

Il primo modo consiste nel calcolare prima lo sconto commerciale e poi il valore attuale.

È innanzitutto necessario determinare i giorni intercorrenti fra il 12 gennaio e il 30 ottobre:Gennaio19Febbraio28Marzo31Aprile30Maggio31Giugno30Luglio31Agosto31Settembre30Ottobre30291\begin{aligned} \text{Gennaio} & \quad 19 \\\text{Febbraio} & \quad 28 \\\text{Marzo} & \quad 31 \\\text{Aprile} & \quad 30 \\\text{Maggio} & \quad 31 \\\text{Giugno} & \quad 30 \\\text{Luglio} & \quad 31 \\\text{Agosto} & \quad 31 \\\text{Settembre} & \quad 30 \\\text{Ottobre} & \quad 30 \\& \quad 291\end{aligned}Siccome abbiamo calcolato il tempo trascorso come giorni di un anno solare, il denominatore delle formule per il calcolo dello sconto commerciale sarà 3650036500: avremo quindiSc=Crt36500=20.0001029136500=1594,52Sc = \frac{C \cdot r \cdot t }{ 36500} = \frac{20.000 \cdot 10 \cdot 291 }{ 36500 }= 1594,52Quindi si procede a calcolare il Valore Attuale:VA=CSc=20.0001.594,52=18.405,48 VA = C - Sc = 20.000 - 1.594,52 = 18.405,48Il secondo modo consiste nell’applicare la formula del Valore Attuale:VA=C(36500rt36500)=20.000(36.5001029136.500)=18.405,48VA = C \cdot \left(\frac{36500 – r \cdot t }{36500}\right) = 20.000 \cdot \left(\frac{36.500 - 10 \cdot 291 }{ 36.500}\right) = 18.405, 48La somma effettivamente pagata dal debitore è quindi di 18.405,48 €

 

È possibile ricavare le seguenti formule inverse dello Sconto Commerciale:C=Sc100rtr=Sc100Ctt=Sc100Cr\begin{aligned}C = Sc \cdot \frac{100 }{ r} \cdot t \\r = Sc \cdot \frac{100 }{ C} \cdot t \\t = Sc \cdot \frac{100 }{ C } \cdot r\end{aligned}

PROBLEMA INVERSO: CALCOLO DEL VALORE NOMINALE DEL DEBITO

Tizio ha pagato un debito in anticipo di 30 mesi ottenendo uno sconto del 6%. Sapendo che lo sconto ottenuto ammonta a 7.500 €, calcolare l’importo del debito.

Graficamente:


 

Applicando la formula inversa del valore nominale (e prestando attenzione al fatto che il tempo è calcolato in mesi):C=Sc1200rt=7.5001.200630=50000 C = Sc \cdot \frac{1200 }{ r } \cdot t = 7.500 \cdot \frac {1.200 }{ 6 } \cdot 30 = 50000 Il valore nominale del debito è quindi di 50.000 €

 

PROBLEMA INVERSO: CALCOLO DEL TASSO DI SCONTO

Caio paga 23.700 € per estinguere un proprio debito di 30.000 € scadente dopo 3 anni. Calcolare il tasso di sconto applicato.

Graficamente:


È necessario calcolare innanzitutto lo sconto commerciale: applicando la formula di definizione, abbiamo cheSc=CVA=30.00023.700=6.300Sc = C - VA = 30.000 - 23.700 = 6.300Applicando ora la formula inversa del tasso di sconto: siccome il tempo è espresso in anni, il denominatore sarà 100. Otteniamo quindir=Sc100Ct=6.30010030.0003=7 r = Sc \cdot \frac{ 100 }{ C }\cdot{ t } = 6.300 \cdot \frac{ 100 }{ 30.000 } \cdot 3 = 7Il tasso di sconto applicato è del 7%7\%.

 

PROBLEMA INVERSO: CALCOLO DEL TEMPO

Sempronio paga anticipatamente un proprio debito di 6.000 € ottenendo uno sconto di 960 €. Sapendo che il tasso di sconto applicato è dell’8%, calcolare i giorni di anticipo con cui è stato pagato il debito.


Graficamente:

 

 

Calcolaremo il tempo in giorni; applicando la formula inversa per ottenere il tempo, quindi, abbiamo chet=Sc100Cr=96036.5006.0008=730 t = Sc \cdot \frac{100 }{ C } \cdot r = 960 \cdot \frac{ 36.500 }{ 6.000 } \cdot 8 = 730Il debito è stato pagato con un anticipo di 730 giorni.

 

È infine possibile ricavare la formula inversa per calcolare il valore nominale del debito, quando sono noti il valore attuale, il tasso di sconto e il tempo. Dalla definizione di sconto commercialeabbiamo ricavato che VA=C(100rt100)VA = C \cdot \displaystyle{\left(\frac{100 - r \cdot t }{ 100 }\right)}. Esplicitanto ora il valore nominale CC, si ha che:C=VA100100rt C = VA \cdot \frac{ 100 }{100 - r \cdot t}In questa formula, il tempo viene calcolato in anni; se venisse calcolato in altre unità, sostituire a 100100 il corrispettivo valore.

 

PROBLEMA INVERSO: CALCOLO DEL VALORE NOMINALE DEL DEBITO

Ambrogio paga con un anticipo di 20 mesi un debito su cui ottiene uno sconto del 12%. Sapendo che Ambrogio ha pagato effettivamente 32.000 €, calcolare l’importo del debito.

Graficamente:

 

Il tempo viene calcolare in mesi: applicando correttamente la formula inversa per calcolare CC si ottiene:C=VA12001200rt=32000120012001220=40.000C = VA \cdot \frac{1200 }{1200 - r \cdot t} = 32000 \cdot \frac{ 1200 }{ 1200 - 12 * 20} = 40.000Il valore nominale del debito è quindi di 40.000 €